•  

HomeKey Stats Bristol

Revision as of 16:16, 25 August 2015 by 92.234.12.153 (Talk) (Energy stats)

Demographic stats

2011 census Mid 2013 estimated
Population 428,100 437,500
Households 182,747 186,760

Energy stats

Bristol has an annual electricity consumption of 1862 GWh (data from 2013) and a daily peak power demand of around 307 MW during winter months. The daily peak demand is calculated by applying the peak to annual consumption ratio of the UK to Bristol.

Bristol's annual gas consumption is 2738 GWh (data from 2013). There is insufficient data available to calculate the peak gas consumption. Because of the inherent storage capacity in the gas network there are fewer issues surrounding the peak.

Type Electrical Capacity Heat Capacity
Seabank 1,145 -
Renewable Electricity 53.9 -
Renewable Heat - 19.9
CHP 9.2 11.9
Total 1,208 32
REngine.php: 
in

pdf(rpdf, width=5, height=5) library(ggplot2) elec.consumption <- data.frame(Year = c(2009,2010,2011,2012,2013),

                              DomesticConsumption = c(718754856.9, 718735925.8,
                                                      718586755.1, 715382012,
                                                      709352993.9),
                              DomesticMPANs = c(189391, 191066, 192449,
                                                193322, 194083),
                              NonDomesticConsumption = c(1176217057,
                                                         1202799481,
                                                         1185903139,
                                                         1135575674,
                                                         1152307023),
                              NonDomesticMPANs = c(17500, 17444, 17350, 17552,
                                                   17590))

elec.consumption$Domestic <- elec.consumption$DomesticConsumption/elec.consumption$DomesticMPANs elec.consumption$NonDomestic <- elec.consumption$NonDomesticConsumption/elec.consumption$NonDomesticMPANs elec.consumption <- elec.consumption[,c(1,6,7)] ggplot(data=elec.consumption, aes(x=Year, y=Domestic)) +

 geom_bar(stat="identity", fill="#4D4D4D") +
 theme_bw() + 
 theme(panel.border = element_blank(), axis.line = element_line()) +
 theme(plot.title = element_text(vjust = 2)) +
 scale_y_continuous(expand = c(0,0)) + 
 xlab("Year") + ylab("Average consumption (kWh)")+
 ggtitle("Average domestic electricity consumption\nper customer in Bristol")
REngine.php: 
in

pdf(rpdf, width=5, height=5) library(ggplot2) elec.consumption <- data.frame(Year = c(2009,2010,2011,2012,2013),

                              DomesticConsumption = c(718754856.9, 718735925.8,
                                                      718586755.1, 715382012,
                                                      709352993.9),
                              DomesticMPANs = c(189391, 191066, 192449,
                                                193322, 194083),
                              NonDomesticConsumption = c(1176217057,
                                                         1202799481,
                                                         1185903139,
                                                         1135575674,
                                                         1152307023),
                              NonDomesticMPANs = c(17500, 17444, 17350, 17552,
                                                   17590))

elec.consumption$Domestic <- elec.consumption$DomesticConsumption/elec.consumption$DomesticMPANs elec.consumption$NonDomestic <- elec.consumption$NonDomesticConsumption/elec.consumption$NonDomesticMPANs elec.consumption <- elec.consumption[,c(1,6,7)] ggplot(data=elec.consumption, aes(x=Year, y=NonDomestic)) +

 geom_bar(stat="identity", fill="#4D4D4D") +
 theme_bw() + 
 theme(panel.border = element_blank(), axis.line = element_line()) +
 theme(plot.title = element_text(vjust = 2)) +
 scale_y_continuous(expand = c(0,0)) + 
 xlab("Year") + ylab("Average consumption (kWh)")+
 ggtitle("Average non-domestic electricity consumption\nper customer in Bristol")
REngine.php: 
in

pdf(rpdf, width=5, height=5) library(ggplot2) gas.consumption <- data.frame(Year = c(2009,2010,2011,2012,2013),

                              DomesticConsumption = c(2188753981, 2158524075,
                                                      2014008753, 2045449904,
                                                      2003430860),
                              DomesticMPANs = c(162126, 163573, 164780,
                                                168961, 167876),
                              NonDomesticConsumption = c(881539141,
                                                         832499075,
                                                         783226304,
                                                         783928929,
                                                         735031042),
                              NonDomesticMPANs = c(2013, 1975, 1915, 1974,
                                                   1966))

gas.consumption$Domestic <- gas.consumption$DomesticConsumption/gas.consumption$DomesticMPANs gas.consumption$NonDomestic <- gas.consumption$NonDomesticConsumption/gas.consumption$NonDomesticMPANs gas.consumption <- gas.consumption[,c(1,6,7)] ggplot(data=gas.consumption, aes(x=Year, y=Domestic)) +

 geom_bar(stat="identity", fill="#4D4D4D") +
 theme_bw() + 
 theme(panel.border = element_blank(), axis.line = element_line()) +
 theme(plot.title = element_text(vjust = 2)) +
 scale_y_continuous(expand = c(0,0)) + 
 xlab("Year") + ylab("Average consumption (kWh)")+
 ggtitle("Average domestic gas consumption\nper customer in Bristol")
REngine.php: 
in

pdf(rpdf, width=5, height=5) library(ggplot2) gas.consumption <- data.frame(Year = c(2009,2010,2011,2012,2013),

                              DomesticConsumption = c(2188753981, 2158524075,
                                                      2014008753, 2045449904,
                                                      2003430860),
                              DomesticMPANs = c(162126, 163573, 164780,
                                                168961, 167876),
                              NonDomesticConsumption = c(881539141,
                                                         832499075,
                                                         783226304,
                                                         783928929,
                                                         735031042),
                              NonDomesticMPANs = c(2013, 1975, 1915, 1974,
                                                   1966))

gas.consumption$Domestic <- gas.consumption$DomesticConsumption/gas.consumption$DomesticMPANs gas.consumption$NonDomestic <- gas.consumption$NonDomesticConsumption/gas.consumption$NonDomesticMPANs gas.consumption <- gas.consumption[,c(1,6,7)] ggplot(data=gas.consumption, aes(x=Year, y=NonDomestic)) +

 geom_bar(stat="identity", fill="#4D4D4D") +
 theme_bw() + 
 theme(panel.border = element_blank(), axis.line = element_line()) +
 theme(plot.title = element_text(vjust = 2)) +
 scale_y_continuous(expand = c(0,0)) + 
 xlab("Year") + ylab("Average consumption (kWh)")+
 ggtitle("Average non-domestic gas consumption\nper customer in Bristol")

Housing stock stats

REngine.php: 
in

pdf(rpdf, width=5, height=5) library(ggplot2) library(scales) library(grid) build_year <- data.frame (

 build.year= c("pre-1870", "1871-1919", "1920-1945", "1946-1954", "1955-1979", "post-1980")
 , number=c(9847,37379,60307,25823,29126,18297))

order <- c("pre-1870", "1871-1919", "1920-1945", "1946-1954", "1955-1979", "post-1980") ggplot(data=build_year, aes(x=build.year, y=number)) + geom_bar(stat="identity", fill="#4D4D4D", colour="black") +

 theme_bw() + 
 theme(panel.border = element_blank(), axis.line = element_line()) + 
 scale_y_continuous(expand = c(0,0), labels=comma) +  
 scale_x_discrete(limits = order) +
 ggtitle('Build year of Bristol homes') +
 theme(plot.title = element_text(vjust=2)) +
 theme(axis.title.y = element_text(vjust = 1)) +
 xlab("Build year") + ylab("Number of homes") 
REngine.php: 
in

pdf(rpdf, width=5, height=5) library(ggplot2) library(scales) library(grid) built_form <- data.frame (

 built.form= c("Detached", "Semi-detached", "Bungalow", "Terraced", "Flat")
 , number=c(8387,48887,2567,75569,45369))

ggplot(data=built_form, aes(x=built.form, y=number)) + geom_bar(stat="identity", fill="#4D4D4D", colour="black") +

 theme_bw() + 
 theme(panel.border = element_blank(), axis.line = element_line()) + 
 scale_y_continuous(expand = c(0,0), labels=comma) +  
 ggtitle('Built form of Bristol homes') +
 theme(plot.title = element_text(vjust=2)) +
 theme(axis.title.y = element_text(vjust = 1)) +
 xlab("Built form") + ylab("Number of homes")   
REngine.php: 
in

pdf(rpdf, width=5, height=5) library(ggplot2) library(scales) library(grid) bedrooms <- data.frame (

 bedrooms= c("1 bedroom", "2 bedroom", "3 bedroom", "4 bedroom", "5 or more")
 , number=c(23952,40834,92492,11340,12161))

ggplot(data=bedrooms, aes(x=bedrooms, y=number)) + geom_bar(stat="identity", fill="#4D4D4D", colour="black") +

 theme_bw() + 
 theme(panel.border = element_blank(), axis.line = element_line()) + 
 scale_y_continuous(expand = c(0,0), labels=comma) +  
 ggtitle('Number of bedrooms in Bristol homes') +
 theme(plot.title = element_text(vjust=2)) +
 theme(axis.title.y = element_text(vjust = 1)) +
 xlab("Number of bedrooms") + ylab("Number of homes") 
REngine.php: 
in

pdf(rpdf, width=5, height=5) library(ggplot2) library(scales) library(grid) tenure <- data.frame (

 tenure= c("Owner occupied", "Privately rented", "Council/housing association")
 , number=c(97622,29360,53797))

ggplot(data=tenure, aes(x=tenure, y=number)) + geom_bar(stat="identity", fill="#4D4D4D", colour="black") +

 theme_bw() + 
 theme(panel.border = element_blank(), axis.line = element_line()) + 
 scale_y_continuous(expand = c(0,0), labels=comma) +  
 ggtitle('Tenure of Bristol homes') +
 theme(plot.title = element_text(vjust=2)) +
 theme(axis.title.y = element_text(vjust = 1)) +
 xlab("Tenure") + ylab("Number of homes") 

The total energy bills for Bristol broken down by sector are:

Annual Consumption (GWh) Meters Average Annual Consumption (kWh) Average Unit Price (£) Average Annual Bill (£) Total Spend (£000,000's)
Domestic Standard Electricity 593 171,945 3,450 0.15 518 89
Economy 7 Electricity 116 22,138 5,246 0.17 910 20
Gas 2003 167,876 11,934 0.05 586 98
Non-Domestic Electricity 1152 17,590 65,509 0.10 6,616 116
Gas 735 1,966 373,871 0.03 10,917 21
 
OFFICIAL SUPPLIER